9 research outputs found

    Optimization of hybrid cache placement for collaborative relaying

    Get PDF
    Traditional wireless multi-hop relaying systems suffer from inefficient use of bandwidth resources. This letter studies the use of content caching at distributed relays to tackle this problem and improve the performance of collaborative relaying. We propose a hybrid caching scheme that is jointly optimized with the transmission schemes, to achieve a fine balance between the signal cooperation gain and the caching diversity gain. The optimization problem of cache placement to minimize the outage probability is studied and is shown to be convex. Numerical results demonstrate significant outage performance gains over traditional relaying without caching

    Exploiting constructive interference for simultaneous wireless information and power transfer in multiuser downlink systems

    Get PDF
    In this paper we propose a power-efficient approach for information and energy transfer in multiple-input single output downlink systems. By means of data-aided precoding, we exploit the constructive part of interference for both information decoding and wireless power transfer. Rather than suppressing interference as in conventional schemes, we take advantage of constructive interference among users, inherent in the downlink, as a source of both useful information signal energy and electrical wireless energy. Specifically, we propose a new precoding design that minimizes the transmit power while guaranteeing the quality of service (QoS) and energy harvesting constraints for generic phase shift keying modulated signals. The QoS constraints are modified to accommodate constructive interference, based on the constructive regions in the signal constellation. Although the resulting problem is nonconvex, several methods are developed for its solution. First we derive necessary and sufficient conditions for the feasibility of the considered problem. Then we propose second-order cone programming and semi definite programming algorithms with polynomial complexity that provide upper and lower bounds to the optimal solution and establish the asymptotic optimality of these algorithms when the modulation order and SINR threshold tend to infinity. A practical iterative algorithm is also proposed based on successive linear approximation of the non-convex terms yielding excellent results. More complex algorithms are also proposed to provide tight upper and lower bounds for benchmarking purposes. Simulation results show significant power savings with the proposed data-aided precoding approach compared to the conventional precoding scheme

    Comment on "Relay selection for secure cooperative networks with jamming"

    Get PDF
    It is the purpose of the note to point out that the Cumulative Distribution Function (CDF) (Eq. (23)) in Appendix A in the paper "Relay Selection for Secure Cooperative Networks with Jamming" by Krikidis et al. (IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5003-5011, Oct. 2009) is not the exact expression but an approximation. We provide the exact solution of the CDF in two forms: one using Beta and hypergeometric functions and the second exploiting a recurrence relationshi

    Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems

    Get PDF
    © 2016 IEEE.We consider a full-duplex (FD) decode-and-forward system in which the time-switching protocol is employed by the multiantenna relay to receive energy from the source and transmit information to the destination. The instantaneous throughput is maximized by optimizing receive and transmit beamformers at the relay and the time-split parameter. We study both optimum and suboptimum schemes. The reformulated problem in the optimum scheme achieves closed-form solutions in terms of transmit beamformer for some scenarios. In other scenarios, the optimization problem is formulated as a semidefinite relaxation problem and a rank-one optimum solution is always guaranteed. In the suboptimum schemes, the beamformers are obtained using maximum ratio combining, zero-forcing, and maximum ratio transmission. When beamformers have closed-form solutions, the achievable instantaneous and delay-constrained throughput are analytically characterized. Our results reveal that beamforming increases both the energy harvesting and loop interference suppression capabilities at the FD relay.Moreover, simulation results demonstrate that the choice of the linear processing scheme as well as the time-split plays a critical role in determining the FD gains

    Specific absorption rate-aware beamforming in MISO downlink SWIPT systems

    No full text
    This paper investigates the optimal transmit beamforming design of simultaneous wireless information and power transfer (SWIPT) in the multiuser multiple-input-single-output (MISO) downlink with specific absorption rate (SAR) constraints. We consider the power splitting technique for SWIPT, where each receiver divides the received signal into two parts: one for information decoding and the other for energy harvesting with a practical non-linear rectification model. The problem of interest is to maximize as much as possible the received signal-to-interference-plus-noise ratio (SINR) and the energy harvested for all receivers, while satisfying the transmit power and the SAR constraints by optimizing the transmit beamforming at the transmitter and the power splitting ratios at different receivers. The optimal beamforming and power splitting solutions are obtained with the aid of semidefinite programming and bisection search. Low-complexity fixed beamforming and hybrid beamforming techniques are also studied. Furthermore, we study the effect of imperfect channel information and radiation matrices, and design robust beamforming to guarantee the worst-case performance. Simulation results demonstrate that our proposed algorithms can effectively deal with the radio exposure constraints and significantly outperform the conventional transmission scheme with power backoff

    Design and analysis of SWIPT with safety constraints

    No full text
    Simultaneous wireless information and power transfer (SWIPT) has long been proposed as a key solution for charging and communicating with low-cost and low-power devices. However, the employment of radio frequency (RF) signals for information/power transfer needs to comply with international health and safety regulations. In this article, we provide a complete framework for the design and analysis of far-field SWIPT under safety constraints. In particular, we deal with two RF exposure regulations, namely, the specific absorption rate (SAR) and the maximum permissible exposure (MPE). The state of the art regarding SAR and MPE is outlined together with a description as to how these can be modeled in the context of communication networks. We propose a deep learning approach for the design of robust beamforming subject to specific information, energy harvesting, and SAR constraints. Furthermore, we present a thorough analytical study for the performance of large-scale SWIPT systems, in terms of information and energy coverage under MPE constraints. This work provides insights with regards to the optimal SWIPT design and the potentials from the proper development of SWIPT systems under health and safety restrictions

    Model-driven learning for generic MIMO downlink beamforming with uplink channel information

    No full text
    Accurate downlink channel information is crucial to the beamforming design, but it is difficult to obtain in practice. This paper investigates a deep learning-based optimization approach of the downlink beamforming to maximize the system sum rate, when only the uplink channel information is available. Our main contribution is to propose a model-driven learning technique that exploits the structure of the optimal downlink beamforming to design an effective hybrid learning strategy with the aim to maximize the sum rate performance. This is achieved by jointly considering the learning performance of the downlink channel, the power and the sum rate in the training stage. The proposed approach applies to generic cases in which the uplink channel information is available, but its relation to the downlink channel is unknown and does not require an explicit downlink channel estimation. We further extend the developed technique to massive multiple-input multiple-output scenarios and achieve a distributed learning strategy for multicell systems without an inter-cell signalling overhead. Simulation results verify that our proposed method provides the performance close to the state of the art numerical algorithms with perfect downlink channel information and significantly outperforms existing data-driven methods in terms of the sum rate

    Introduction to the issue on signal processing for exploiting interference toward energy efficient and secure wireless communications

    Get PDF
    INTERFERENCE has been the central focus for meeting the ever increasing requirements on quality of service in modern and future wireless communication systems, and has long been considered as a deleterious factor that limits the system capacity. In conventional communications systems, the design objective is to allow users to share a medium with minimum or no interference. Thus, great efforts are made to avoid, mitigate, and cancel interference. For instance, to support multiple users, orthogonal access methods in time, frequency, code well as spatial domains have been used in different generations of cellular systems. In future-generation heterogeneous cellular networks, due to the increasing number of uncoordinated lowpower nodes such as femtocells to improve the coverage and pacity, interferences need to be mitigated in multiple domains, rendering their management a challenge. Interference mitigation/avoidance techniques provide convenient mechanisms allow multiple users to share the wireless medium. However, they lead to inefficient use of wireless resources

    Embedding model-based fast meta learning for downlink beamforming adaptation

    Get PDF
    This paper studies the fast adaptive beamforming for the multiuser multiple-input single-output downlink. Existing deep learning-based approaches assume that training and testing channels follow the same distribution which causes task mismatch, when the testing environment changes. Although meta learning can deal with the task mismatch, it relies on labelled data and incurs high complexity in the pre-training and fine tuning stages. We propose a simple yet effective adaptive framework to solve the mismatch issue, which trains an embedding model as a transferable feature extractor, followed by fitting the support vector regression. Compared to the existing meta learning algorithm, our method does not necessarily need labelled data in the pre-training and does not need fine-tuning of the pre-trained model in the adaptation. The effectiveness of the proposed method is verified through two well-known applications, i.e., the signal to interference plus noise ratio balancing problem and the sum rate maximization problem. Furthermore, we extend our proposed method to online scenarios in non-stationary environments. Simulation results demonstrate the advantages of the proposed algorithm in terms of both performance and complexity. The proposed framework can also be applied to general radio resource management problems
    corecore